Chebyshev Polynomial Expansion of Bose-Einstein Functions of Orders 1 to 10*

By Edward W. Ng, C. J. Devine and R. F. Tooper**

Abstract. Chebyshev series approximations are given for the complete Bose-Einstein functions of orders 1 to 10. This paper also gives an exhaustive presentation of the relation of this function to other functions, with the emphasis that some Fermi-Dirac functions and polylogarithms are readily computable from the given approximations. The coefficients are given in 21 significant figures and the maximal relative error for function representation ranges from 2×10^{-20} to 3×10^{-19} . These expansions are fast convergent; for example, typically six terms gives an accuracy of 10^{-8} .

1. Introduction. The Bose-Einstein function occurs in a wide variety of physical problems, in many different forms. It has been used in problems of statistical physics, quantum electrodynamics, polymer structure and electrical networks [1], [2]. We shall define the most general Bose-Einstein function by its integral representation, as follows:

(1)
$$B_p(\eta, u) = \frac{1}{\Gamma(p+1)} \int_0^u \frac{x^p dx}{e^{x-\eta} - 1},$$

where η and u may be complex. For $u > \eta$ the integral is to be interpreted as a principal value. In this paper we shall only investigate the complete Bose-Einstein function for η , defined as

(2)
$$B_p(\eta) \equiv \lim_{u \to \infty} B_p(\eta, u) .$$

The important mathematical properties of this function are discussed in Section 2. Its relations to other functions are presented in Section 3, emphasizing the fact that some functions are readily computable from $B_p(\eta)$. Our method of obtaining the Chebyshev expansions, including discussions of actual computations and accuracy are given in Section 4. The coefficients of the Chebyshev expansion are presented in the microfiche appendix of this issue.

2. Mathematical Properties. The following properties can be found in Truesdell [3], [4], and Dingle [5]:

(3)
$$B_p(\eta) = \frac{\partial}{\partial \eta} B_{p+1}(\eta) ,$$

Received October 9, 1968, revised February 24, 1969.

^{*} This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract #NAS 7-100, sponsored by the National Aeronautics and Space Administration.

^{**} Presently at the University of Southern California.

EDWARD W. NG, C. J. DEVINE AND R. F. TOOPER

(4)
$$B_p(\eta) = \sum_{k=1}^{\infty} \frac{e^{k\eta}}{k^{p+1}}, \quad \eta < 0,$$

(5)
$$= \sum_{k=0}^{\infty} \frac{\eta^k}{k!} \zeta(p+1-k) - \frac{\pi(-\eta)^p}{p! \sin \pi p}, \qquad 0 < -\eta < 2\pi, \ p \neq \text{ integer },$$

(6)
$$= \sum_{k=0}^{\infty} \frac{\eta^k}{k!} \zeta(p+1-k) - \frac{\pi \eta^p}{p! \tan \pi p}, \quad 0 < \eta < 2\pi, p \neq \text{integer},$$

(7)
$$= \sum_{k=0; \ k \neq p}^{\infty} \frac{\eta^{k}}{k!} \zeta(p+1-k) - \frac{\eta^{p}}{p!} \{\ln |\eta| - \Psi(p+1) + \Psi(1)\},$$

 $|\eta| < 2\pi, p = ext{integer},$

where $\Psi(p) = (1/\Gamma(p)) (d/dp) \Gamma(p)$, and $\zeta(p)$ is Riemann's zeta function.

(8)
$$B_{p}(\eta) = \cos \pi p B_{p}(-\eta) + 2 \sum_{k=0}^{\left[(p+1)/2\right]} \frac{\zeta(2k) \eta^{p+1-2k}}{(p+1-2k)!} + \frac{2\sin \pi p}{\pi} \sum_{k=\left[(p+3)/2\right]}^{\infty} \frac{\zeta(2k) (2k-p-2)!}{\eta^{2k-2p-1}},$$

where [a] denotes the largest integer contained in a. This function can be treated from different routes of approach. Dingle started from the integral representation of $B_p(\eta)$ and derived useful properties, mainly from a Mellin transform. Truesdell [3] defined the function by the series (4), with Eq. (8) providing the analytic continuation. Truesdell [4] also considered a differential-difference equation of the type (3) and derived mathematical properties subject to certain boundary conditions, e.g., in this case

(9)
$$B_p(0) = \zeta(p+1), \quad p > 0,$$

(10)
$$B_{-1}(\eta) = e^{\eta} [1 - e^{\eta}]^{-1}, \quad \eta \neq 0,$$

or

(11)
$$B_0(\eta) = \ln \left(\left| 1 - e^{\eta} \right| \right), \quad \eta \neq 0.$$

He suggests this latter approach as a basis for a unified theory for most of the special functions of mathematical physics. We note parenthetically that the functions of negative integer orders are expressible in terms of elementary functions by the use of Eqs. (3) and (10).

3. Relation to Other Functions.

(i) To the hypergeometric function ${}_{n}F_{k}(a_{1} \cdots a_{n}; b_{1} \cdots b_{k}; z)$: It is evident that for p = integer the series (3) can be expressed in the form

(12)
$$B_n(\eta) = \lim_{\epsilon \to 0} [_{n+1}F_n(\epsilon, \cdots, \epsilon; 1, 1, \cdots, 1; e^{\eta}) - 1]\epsilon^{-(n+1)}.$$

(ii) To the polylogarithm: Using Lewin's [1] notation, we define the polylogarithm as

640

(13)
$$Li_{n}(z) = \int_{0}^{z} \frac{Li_{n-1}(z)}{z} dz ,$$
$$Li_{2}(z) = \int_{0}^{z} \frac{\ln (|1-z|)}{z} dz ,$$
$$Li_{1}(z) = \ln (|1-z|) .$$

Then

(14)
$$Li_n(z) = B_{n-1}(\ln z)$$
.

 $Li_2(z)$ has been investigated by many mathematicians, including Euler, Abel, Kummer, and Ramanujan, and is usually labeled as the dilogarithm or Euler's dilogarithm [1]. Recently Kölbig [6] presented an algorithm to compute this function to 14 significant digits.

(iii) To the Fermi-Dirac function: Define the complete Fermi-Dirac function as

(15)
$$F_p(\eta) = \frac{1}{\Gamma(p+1)} \int_0^\infty \frac{x^p dx}{e^{x-\eta} + 1}$$

Dingle [5] has shown the following relations to be true for real η :

(16)
$$B_p(\eta) = -\text{Real part of } F_p(\eta + i\pi) ,$$

(17)
$$B_p(\eta) = \sum_{k=0}^{\infty} (2^{-p})^k F_p(2^k \eta)$$

and

(18)
$$F_p(\eta) = B_p(\eta) - 2^{-p} B_p(2\eta) .$$

The last expression suggests that the computation of the Fermi-Dirac function is facilitated readily by the Bose-Einstein function.

(iv) To the Debye function: Define the Debye function as (see [7])

(19)
$$\Gamma(p+1)D_p(x) = \int_x^\infty \frac{t^p dt}{e^t - 1};$$

we see the relation

(20)
$$D_p(x) = [\zeta(p+1) - B_p(0, x)].$$

(v) To the various zeta functions: If we start with the series representation of Riemann's zeta function,

(21)
$$\zeta(s) = \sum_{k=1}^{\infty} k^{-s},$$

we can generalize the function as follows:

(22)
$$\zeta(s,\alpha) = \sum_{k=0}^{\infty} (\alpha+k)^{-s},$$

(23)
$$F(z,s) = \sum_{k=1}^{\infty} k^{-s} z^k, \quad |z| < 1,$$

641

EDWARD W. NG, C. J. DEVINE AND R. F. TOOPER

(24)
$$\Phi(z, s, \alpha) = \sum_{k=0}^{\infty} (\alpha + k)^{-s} z^{k}, \quad |z| < 1.$$

The last three functions are known as the generalized zeta function, Jonquière's function and Lerch's transcendent, respectively [8]. The last two functions can be appropriately continued analytically beyond the indicated circle of convergence [4]. Comparing Eq. (23) to Eq. (4), we have immediately

(25)
$$F(z,s) = B_{s-1}(\ln z) .$$

Notice that Jonquière's function is just a generalization of the polylogarithm.

(vi) To the exponential integral: Dingle [4] has given the following identity:

(26)
$$B_{p}(\eta) = \sum_{k=0}^{\infty} Ei_{p+1}(2\pi ki - \eta) ,$$

where

$$Ei_p(z) = \int_1^\infty t^{-p} e^{-zt} dt$$
 $(p \ge 1, R(z) > 0)$

4. Chebyshev Polynomial Expansions: Approximating Forms and Computations. The advantages of expanding functions in Chebyshev polynomials are well known. Clenshaw [9] presents exhaustive discussions of comparison among Chebyshev series, best-fit polynomials and economized power series, and also methods for computing Chebyshev coefficients. In this paper, we present three sets of expansions as follows:

(27)
$$B_p(\eta) \approx e^{\eta} \sum_{k=0} a_k^{(p)} T_k^*(e^{\eta+1}) \text{ for } -\infty \leq \eta \leq -1, p = 1, 2, \cdots, 10.$$

(28)
$$B_p(\eta) \approx \sum_{k=0} b_k^{(p)} T_k(\eta) - \frac{\eta^p}{p!} \ln |\eta| \text{ for } -1 \leq \eta \leq 1, p = 1, 2, \cdots, 10.$$

(29)
$$B_{p}(\eta) \approx Q_{p}(\eta) + \frac{1}{2} \eta^{p+2} \sum_{k=0} c_{k}^{(p)} T_{2k}\left(\frac{\eta}{2}\right) - \frac{\eta^{p}}{p!} \ln |\eta|$$
$$for -2 \leq \eta \leq 2, p = 1, 2, \dots, 5.$$

For the range $(1, \infty)$, one can use expansion (27) and Eq. (8) which is simple for p = integer. In the last three equations, T_n and T_n^* are the usual Chebyshev and shifted Chebyshev polynomials, Q_p is a (p + 1)th degree polynomial, the coefficients of which will also be given. The expansion (27) is computed from a straightforward economization of the series (4), and the expansion (28) is obtained from the use of the orthogonal property of summation, both methods being described in [9]. The expansion (29) is computed by economizing part of the series in Eq. (7), leaving out a polynomial

(30)
$$Q_p(\eta) = \sum_{k=0}^{p-1} \frac{\eta^k}{k!} \zeta(p+1-k) - \frac{\eta^p}{p!} [\Psi(1) - \Psi(p+1)] - \frac{1}{2} \frac{\eta^{p+1}}{(p+1)!}.$$

For the lower order functions this breaking up is advantageous because the series

$$\sum_{k=p+2}^{\infty} \frac{\eta^k}{k!} \zeta(p+1-k)$$

642

is even, due to $\zeta(-2k) = 0$, and the polynomial Q_p is a low order one. The evenness of the last series also accounts for the fact that

$$b_{p+2k+1}^{(p)} = 0$$
, $k = 1, 2, \cdots$.

The above three Chebyshev expansions are rapidly convergent. For example, we need typically six terms for an accuracy of 10^{-8} and thirteen for 10^{-16} .

All computations were performed on the IBM 7094 Mod II using a package of subroutines in 70-bit (about 21 decimal digits) arithmetic, written by Dr. C. L. Lawson and associates of the Jet Propulsion Laboratory. In Tables I to X in the microfiche appendix, we present the coefficients for the expansions (27) to (29). Each expansion, with its rounded coefficients is checked by its corresponding program of function generation for 1000 pseudo-random arguments. The maximal relative error ranges from 2×10^{-20} to 3×10^{-19} . In addition, the expansions (27) and (29) were checked against each other in the cross region $-2 \leq \eta - 1$, and the expansions (28) and (29) in $-1 \leq \eta \leq +1$. To further insure against gross errors, we have also used each expansion to compute the polylogarithms by Eq. (14) and spot-check against a 10-decimal table of such functions [10].

The authors are indebted to Dr. C. L. Lawson for many helpful discussions.

Jet Propulsion Laboratory California Institute of Technology Pasadena, California 91103

Kellogg Radiation Laboratory California Institute of Technology Pasadena, California 91103

1. L. LEWIN, Dilogarithms and Associated Functions, MacDonald, London, 1958. MR 21 #4264.

2. R. J. SWENSON, "Evaluation of Fermi and Bose integrals," Phys. Lett., v. 26A, 1968, p. 632.

3. C. TRUESDELL, "On a function which occurs in the theory of the structure of polymers,"

Ann. of Math., v. 46, 1945, p. 144.
4. C. TRUESDELL, A Unified Theory of Special Functions, Ann. of Math. Studies, no. 18, Princeton Univ. Press, Princeton, N. J., 1948. MR 9, 431.
5. R. B. DINGLE, "The Bose-Einstein integrals," Appl. Sci. Res. B, v. 6, 1957, pp. 240-244.

MR 19, 133.

6. K. S. Kölbig, "Algorithm 327: Dilogarithm," Comm. Assoc. Comput. Mach., v. 11, 1968, p. 270.

7. M. ABRAMOWITZ & I. A. STEGUN, (Editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Nat. Bur. Standards Appl. Math. Series, No. 55, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964; 3rd printing with corrections, 1965. MR 29 #4914; MR 31 #1400.

8. W. MAGNUS, F. ÓBERHETTINGER & R. SONI, Special Functions of Mathematical Physics,

Springer-Verlag, New York, 1966. 9. C. W. CLENSHAW, Chebyshev Series for Mathematical Functions, National Physical Lab. Math. Tables, vol. 5, HMSO, London, 1962. MR 26 #362.

10. STAFF OF THE COMPUTATION DEPARTMENT, MATHEMATISCH CENTRUM, AMSTERDAM, Table of Polylogarithms, Part I: Numerical Values, Report R24, 1954. See MTAC, v. 9, 1955, p. 40, RMT 29. MR 16, 523.

BOSE-EINSTEIN FUNCTION OF ORDER 1 FOR X IN (-INFINITY,-1) (1) k k Ó 1.05285 82239 81766 23290 5.53862 68567 09330 246 1 (-2) (-3)2.68437 82246 98853 90 2 3 1.67463 06089 39455 4 (-4) 1.19952 18076 28102 9.37378 96647 949 (-5) 4 5 (-7) 6 7.77690 37272 48 (-8) 7 6.73964 05546 2 (-9) 8 (-10)6.03774 86833 9 (-11)5.55186 5135 10 (-12) 5.21359 045 11 (-13)4.98145 34 4.82919 9 12 (-14)13 (-15)4.73966 14 (-16)4.7014 15 (-17)4.707 16 (-18)4.75 17 (-19)4.8 (-20) 18 4.9 $\sum_{k}^{10} \mathbf{a}_{k}^{(1)} = 1.11110 \ 93516 \ 05231 \ 73202$ BOSE-EINSTEIN FUNCTION OF ORDER 1 FOR X IN (-1,1) bk(1) k 0 1.51993 40668 48226 43647 1 (-1)9.89626 31109 51687 8761 2 (-1) -1+25 3 (-3) -3.45077 54757 15978 48 4 0.0 5 4.25574 58405 2858 (-6)6 0.0 7 (-8) -1.19086 65392 68 8 0.0 9 4.28764 4049 (-11)10 0.0 11 (-13) -1.74985 65 12 0.0 13 (-16)7.7113 14 0.0 15 (-18) -3.58 16 0.0 17 1-20) 1.7 $\sum_{k}^{17} b_{k}^{(1)} -2.38111 38463 47556 60391$

BOSE-EINST	IN FUNCTION OF ORDER 1 FOR x IN $(-2+2)$
k	c ⁽¹⁾
$\begin{array}{c} 0 & (-) \\ 2 & (-) \\ 4 & (-) \\ 6 & (-) \\ 10 & (-) \\ 12 & (-) \\ 12 & (-) \\ 14 & (-) \\ 16 & (-) \\ 18 & (-) \\ 20 & (-) \\ 22 & (-) \end{array}$	$\begin{array}{c} -2 & -2 & .75090 & 13908 & 11024 & 28184 \\ +4 & 2 & .65829 & 22379 & 68585 & 000 \\ -2 & .89358 & 20907 & 06378 & 6 \\ +3 & .04138 & 48538 & 3962 \\ 10 & -6 & .38638 & 59258 & 67 \\ 11 & 1 & .08934 & 48843 & 6 \\ 13 & -1 & .95667 & 2987 \\ 15 & 3 & .65137 & 88 \\ 17 & -7 & .01683 \\ 18 & 1 & .3802 \\ 20 & -2 & .77 \\ 22 & 5 & .6 \end{array}$
	$\sum_{k=0}^{n} \frac{(1)}{k} = -2 \cdot 72460 38480 69278 07790 \times 10^{-1}$

COEFFICIENTS FOR THE LEADING POLYNOMIAL BOSE-EINSTEIN FUNCTION OF ORDER 1

k $d_k^{(1)}$ 0 1.64493 40668 48226 43647 1 +1.0 2 (-1) -2.5 BOSE-EINSTEIN FUNCTION OF ORDER 2 FOR X IN (-INFINITY,-1)

•			* (2)		
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	(-2) (-4) (-5) (-6) (-7) (-10) (-11) (-12) (-13) (-14) (-13) (-14) (-15) (-16) (-17) (-18) (-19)	1.02516 2.59438 8.14112 3.72894 2.10330 1.35324 9.53221 7.17315 5.67635 4.67305 3.97172 3.46544 3.09090 2.8088 2.594 2.43 2.3	50896 89137 06811 79723 79748 80891 51443 11792 3470 059 78 5	98219 13750 94398 29444 2893 422 3	58167 436 3
8061	(-20) E-EINSTEI	$\sum_{k=0}^{17} (2)$	1.051	96 2629 RDFR :	93 27385 63862
6001			(21		
k			b		
			—		
á		1.57575	84100	92016	82040
စ် 1		1•57575 1•58243	× 84100 40668	92016 4822 6	82060 43647
ර 1 2	(-1)	1.57575 1.58243 3.73269	84100 4 0668 27164	92016 48226 27211	82060 43647 9152
ó 1 2 3	(-1) (-2)	1.57575 1.58243 3.73269 -2.08333	84100 40668 27164 33333	92016 48226 27211 33333	82060 43647 9152 333
ó 1 2 3 4	(-1) (-2) (-4)	1.57575 1.58243 3.73269 -2.08333 -4.31878	84100 40668 27164 33333 90269	92016 48226 27211 33333 45633	82060 43647 9152 333 8
ó 1 2 3 4 5	(-1) (-2) (-4)	1.57575 1.58243 3.73269 -2.08333 -4.31878 0.0	84100 40668 27164 33333 90269	92016 48226 27211 33333 45633	82060 43647 9152 333 8
ó 1 2 3 4 5 6	(-1) (-2) (-4) (-7)	1.57575 1.58243 3.75269 -2.08333 -4.31878 0.0 3.55637	84100 40668 27164 33333 90269 87549	92016 48226 27211 33333 45633 344	82060 43647 9152 333 8
ó 1 2 3 4 5 6 7	(-1) (-2) (-4) (-7)	1.57575 1.58243 3.75269 -2.08333 -4.31878 0.0 3.55637 0.0	84100 40668 27164 33333 90269 87549	92016 48226 27211 33333 45633 344	82060 43647 9152 333 8
ó 1 2 3 4 5 6 7 8	(-1) (-2) (-4) (-7) (-10)	1.57575 1.58243 3.75269 -2.08333 -4.31878 0.0 3.55637 0.0 -7.46971	84100 40668 27164 33333 90269 87549 36457	92016 48226 27211 33333 45633 344	82060 43647 9152 333 8
ó 1 2 3 4 5 6 7 8 9	(-1) (-2) (-4) (-7) (-10)	1.57575 1.58243 3.73269 -2.08333 -4.31878 0.0 3.55637 0.0 -7.46971 0.0 2.15257	84100 40468 27164 33333 90269 87549 36457	92016 48226 27211 33333 45633 344	82060 43647 9152 333 8
ó 1 2 3 4 5 6 7 8 9 10	(-1) (-2) (-4) (-7) (-10) (-12)	1.57575 1.58243 3.73269 -2.08333 -4.31878 0.0 3.55637 0.0 -7.46971 0.0 2.15257 0.0	84100 40468 27164 33333 90249 87549 36457 131	92016 48226 27211 33333 45633 344	82060 43647 9152 333 8
ó 1 2 3 4 5 6 7 8 9 10 11	(-1) (-2) (-4) (-7) (-10) (-12) (-15)	1.57575 1.58243 3.73269 -2.08333 -4.31878 0.0 3.55637 0.0 -7.46971 0.0 2.15257 0.0 -7.32320	84100 40468 27164 33333 90269 87549 36457 131	92016 48226 27211 33333 45633 344	82060 43647 9152 333 8
ó 1 2 3 4 5 6 7 8 9 10 11 12 13	(-1) (-2) (-4) (-7) (-10) (-12) (-15)	1.57575 1.58243 3.73269 -2.08333 -4.31878 0.0 3.55637 0.0 -7.46971 0.0 2.15257 0.0 -7.32320 0.0	84100 40468 27164 33333 90269 87549 36457 151	92016 48226 27211 33333 45633 344	82060 43647 9152 333 8
ó 1 2 3 4 5 6 7 8 9 10 11 12 13 14	(-1) (-2) (-4) (-7) (-10) (-12) (-12) (-15) (-17)	1.57575 1.58243 3.73269 -2.08333 -4.31878 0.0 3.55637 0.0 -7.46971 0.0 2.15257 0.0 -7.32320 0.0 2.767	84100 40468 27164 33333 90269 87549 36457 151	92016 48226 27211 33333 45633 344	82060 43647 9152 333 8
ó 1 2 3 4 5 6 7 8 9 10 11 12 13 14	(-1) (-2) (-4) (-7) (-10) (-12) (-15) (-17)	1.57575 1.58243 3.73269 -2.08333 -4.31878 0.0 3.55637 0.0 -7.46971 0.0 2.15257 0.0 -7.32320 0.0 2.767 0.0	84100 40468 27164 33333 90269 87549 36457 151	92016 48226 27211 33333 45633 344	82060 43647 9152 333 8
ó 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	(-1) (-2) (-4) (-7) (-10) (-12) (-12) (-15) (-17) (-19)	1.57575 1.58243 3.73269 -2.08333 -4.31878 0.0 3.55637 0.0 -7.46971 0.0 2.15257 0.0 -7.32320 0.0 2.767 0.0 -1.1	84100 40468 27164 33333 90269 87549 36457 131	92016 48226 27211 33333 45633 344	82060 43647 9152 333 8

BOSE-EINSTEIN FUNCTION OF ORDER 2 FOR X IN (-2+2)

COEFFICIENTS FOR THE LEADING POLYNOMIAL BOSE-EINSTEIN FUNCTION OF ORDER 2

k d⁽²⁾ D 1.20205 69031 59594 28540 1 1.664493 40668 48226 43647 2 (-1) +7.5 3 (-2) -8.38333 33333 33533 33533

(3) k 1.01219 31451 29650 82949 0 1.24382 55879 25482 627 (-2)1 2 (-4)2.53265 31050 84119 9 8.51332 84354 5471 3 (-6)3.77619 33554 889 (-7)4 5 1.99716 22042 57 (-8) 6 + (-9) 1.19257 23029 0 7 (-11) 7.78156 5102 (-12)5.43233 929 8 9 (-13) 3-99928 81 10 3.07321 9 (-14)(-15) 2.44642 11 2.0059 12 (-16)13 (-17)1.686 1.45 14 (-18)15 (-19)1.3 16 (-20) 1.1 Ł 16 $\sum_{k=1}^{10} \mathbf{a}_{k}^{(3)} = 1.02489 35785 15060 73359$ BOSE-EINSTEIN FUNCTION OF ORDER 3 FOR X IN (-1,1) b(3) k 1.48574 42504 23194 80063 0 1.43079 04409 37322 89151 1 (-1)4.00816 85004 53899 4245 2 7.61724 13979 79151 471 3 (-2)4 (-3) -2.60416 66666 66666 67 5 (-5) -4.32234 54057 00568 6 0.0 7 (-8)2.54560 60489 86 8 0.0 9 (-11) -4.16179 9644 10 0.0 11 (-14)9.81770 2 12 0.0 13 (-16) -2.8273 14 0.0 15 (-19)9.3 $\sum_{k=0}^{15} b_{k}^{(3)}$ 3.39087 65906 79515 86559

BOSE-EINSTEIN FUNCTION OF ORDER 3 FOR X IN (-INFINITY,-1)

k	c _k ⁽³⁾	
0	(-3) -1 .38240 23448 564 39 85359	
2	(-6) 6.44479 28657 44857 16	
4	(-8) -4.13655 18361 34391	
6	(-10) 3.81314 96849 471	
8	(-12) -4.27812 59257 7	
10	(-14) 5.44781 6440	
12	(-16) -7.58766 77	
14	(-17) 1.13022 2	
16	(-19) - 1.7740	
18	(-21) 2.90	
20	(-23) -4.9	
	$\sum_{k=0}^{10} c_{2k}^{(3)} - 1.37599 85404 18483 24610 \times 10^{-1}$	3

•

COEFFICIENTS FOR THE LEADING POLYNOMIAL BOSE-EINSTEIN FUNCTION OF ORDER 3

k	dk ⁽³⁾
0	1.08232 32337 11138 19152
1	1.20205 69031 59594 28540
2	(-1) 7+22467 03342 41132 18235
3	(-1) +3.05555 55555 55555 55555
4	(-2) -2 .08333 33333 33333 33333

BOSE-EINSTEIN FUNCTION OF ORDER 4 FOR X IN (-INFINITY,-1)

k			•(4) •k			
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	(-3) (-5) (-6) (-9) (-10) (-12) (-13) (-14) (-15) (-16) (-17) (-18) (-20)	1.00597 6.05236 8.02626 1.98208 6.91269 3.00326 1.51891 8.58567 5.28269 3.47486 2.41228 1.7507 1.319 1.0 8.2 14	40171 39813 05972 20770 30600 51255 79724 853 07 1	90023 86722 96852 2585 80 8	41635	
BOSE-	EINSTEIN	$\sum_{k=0}^{n} a_{k}^{(4)}$	• 1 • 0 1 2 1	10 8698 RDER 4	31 50698 For X	95505 In (-1,1)
k			٥ <mark>(4)</mark> ۲			
0		1.36995	79515	31983	75414	
1		1.28533	58254	00499	82940	
2	(-1)	3.43862	84007	27161	7753	
3	(-2)	6.72368	36118	67610	152	
4	(-2)	1.08290	38012	56439	838	
5	(-4)	-2.60416	66666	66666	7	
6	(-6)	-3.60407	58431	2463		
7		0.0				
8	(-9)	1.59360	49053	9		
9		0.0				
10	(-12)	-2.08580	867			
11		0.0				
12	(-15)	4.10249				
13		0.0				
14	(-17)	-1+013				
15		0.0				
16	(-20)	2.9				
		$\sum_{k=0}^{16} b_k^{(l_k)} =$	3.0769	95 847]	9 85453	65878

BOSE-EI	NSTEIN	FUNCTION	OF OR	DER 4 1	FOR X IN	(-2+2)
k			€ <mark>(4)</mark> }k			
0	(-4)	-2.30667	54817	24920	37306	
2	(-7)	8.09726	12718	00291	68	
Ā	(-9)	-4.17468	33329	83862		
6	(-11)	3.21845	01652	669		
8	(-13)	-3.10462	70577	1		
10	(-15)	3.46844	7654			
12	(-17)	-4.30385	49			
14	(-19)	5.78113				
16	(-21)	-8.26				
18	(~22)	1.24				
20	(-24)	-1.9				
		$\sum_{k=0}^{10} c_{2k}^{(4)} =$	2.298	61 964	85 11 8 00	66022 x 10 ⁻⁴
COEFFIC BOSE-EI	IENTS I NSTEIN	FOR THE LI FUNCTION	EADING OF OR	POLYN DER 4	DHIAL	
k			d _k (4)			
0		1.03692	77551	43369	92633	
ĭ		1.08232	32337	11138	19152	
2	(-1)	6.01028	45157	97971	42700	
3	(-1)	2.74155	67780	80377	39412	
4	(-2)	+8.68055	55555	55555	55556	
5	(-3)	-4.16666	66666	`66666	66666	

BOSE-EINSTEIN FUNCTION OF ORDER 5 FOR X IN (-INFINITY,-1)

a(5) k k 1.00294 78351 99330 05491 0 2.97316 01322 40910 19 2.57811 10931 93397 (-3)1 (-5) 2 3 (-7)4.68595 55007 038 4 5 (-8) 1.28576 48714 51 4.58855 47567 (-10) 1.96480 9486 6 (-11) 7 9.61575 78 (-13) 5.21147 5 8 (-14) 3.06097 9 (-15) 1.9185 10 (-16) 11 (-17) 1.269 (-19) 8.8 12 13 (-20) 6.3 $\sum_{k=1}^{13} a_{k}^{(5)} = 1.00594 72583 75222 21.147$ BOSE-EINSTEIN FUNCTION OF ORDER 5 FOR X IN (-1+1) b(5) k k 1.31340 89513 17848 33677 0 1 1.19906 81981 62292 33203 2 3.04524 74732 04559 3197 (-1)3 5.60264 67010 02529 653 (-2)4 8.43715 65981 67846 02 (-3)5 1.18743 08755 07418 97 (-3) (-5) -2.17013 88888 88889 6 7 (-7) -2.57547 81771 643 8 0.0 9 (-11)8.86494 8412 10 0.0 11 (-14) -9.49959 612 0.0 13 (-16)1.5818 14 0.0 15 (-19) -3.4 $\sum_{k=0}^{15} b_k^{(5)} = 2.88263 09924 36145 20297$

```
c(5)
k
 k
BOSE-EINSTEIN FUNCTION OF ORDER 5 FOR X IN (-2+2)
            (-5) -3.29780 92312 88972 87786
 0
          (-8) 9.03060 18341 58017 59
(-10) -3.82215 14626 38158
(-12) 2.50122 57345 576
 2
 4
 6
          (-14) -2.09701 90808 7
 8
          (-16) 2.07236 2352
10
          (-18) -2.30595 90
12
14
          (-20) 2.80800
          (-22) -3.671
16
18
          (-24) 5.1
      •
         (-26) -7.3
20
                 \sum_{k=0}^{10} c_k^{(5)} - 3.28881 \ 66029 \ 23391 \ 06755 \times 10^{-5}
```

COEFFICIENTS FOR THE LEADING POLYNOMIAL BOSE-EINSTEIN FUNCTION OF ORDER 5

k			d _k (5)		
0		1.01734	30619	84449	13971
1		1.03692	77551	43369	92633
2	(-1)	5.41161	61685	55690	95758
3	(-1)	2.00342	81719	326 57	14233
4	(-2)	6.85389	19452	00943	48529
5	(-2)	+1.90277	77777	77777	77778
6	(+4)	-6+94444	44444	44444	44444

BOSE-EINSTEIN FUNCTION OF ORDER 6 FOR X IN (-INFINITY--1)

k			a(6) k			
0		1.00146	12551	33209	59981	
1	(-3)	1.46950	81305	20546	87	
2	(-6)	8.36276	02678	8247		
3	(-7)	1.12117	28910	808		
4	(-9)	2.42291	49745	1		
5	(-11)	7+10545	9157			
6	(-12)	2.57596	628			
7	(-13)	1.09125	85			
8	(-15)	5.20774				
9	(-16)	2.7301				
10	(-17)	1.544				
11	(-19)	9.3				
12	(-20)	5.9				
		$\sum_{k=0}^{12} a_k^{(6)} =$	1.0029	9240) 6 37947	29262

BOSE-EINSTEIN FUNCTION OF ORDER 6 FOR X IN (-1.1)

{لا}(6) k 1.28742 61587 58135 30307 0 1,16114 65776 57620 37079 1 (-1) 2.85868 93973 25112 0332 2 (-2) 4.93479 31787 04801 432 3 (-3) 6.89828 22945 92512 47 4 5 (-4) 8.45885 79870 56734 9 6 (-4) 1.06207 83157 33909 1 (-6) -1.55009 92063 4921 7 (-8) -1.61022 79200 03 . 8 9 0.0 10 (-12)4.43722 400 11 0.0 12 (-15) -3.96476 13 0.0 (-18)14 5.66 15 0.0 16 (-20) -1.1 $\sum{i=1}^{16}$ b_k⁽⁶⁾ = 2.79163 84176 63134 18402

a(7) k κ 1.00072 65010 67949 32638 0 7.29206 60379 37048 8 (-4)1 2 (-6)2.73216 26652 5465 (-8) 2.70774 91505 23 3 (-10)4.61469 37088 4 5 (-11)1.11283 8213 (-13) 3.41666 50 6 7 (-14)1.25291 5 8 (-16)5.2641 9 (-17)2.463 (-18) 1.26 10 (-20) 6.9 11 $\sum_{k}^{11} \mathbf{a}_{k}^{(7)} = 1.00145 \ 84673 \ 84852 \ 29217$ BOSE-EINSTEIN FUNCTION OF ORDER 7 FOR X IN (-1.1) b(7) k k 1.27603 49784 56404 36794 0 1.14450 71898 83943 19347 1 (-1) 2 2.77949 66146 76430 8912 3 (-2) 4.65044 10168 22454 371 4 (-3) 6.06275 57485 42792 60 5 6.82307 64471 46105 7 (-4) 6 7.06196 58159 33522 (-5) 7 (-6)8.03030 93341 4798 8 (-8) -9.68812 00396 83 9 (-10) -8.94817 57911 10 0.0 (-13)11 2.01872 22 12 0.0 (-16) -1.5271 13 14 0.0 15 (-19)1.9 $\sum_{k}^{12} b_{k}^{(7)} = 2.75181 \ 98555 \ 61149 \ 81837$

BOSE-EINSTEIN FUNCTION OF ORDER 7 FOR X IN (-INFINITY -1)

(⁸) k 1.00036 18977 66052 47394 0 ì (-4)3.62788 56887 19901 7 (-7)8.97303 38446 989 2 3 (-9) 6.58751 01698 7 4 (-11) 8.86604 8496 5 (-12)1.75964 099 (-14)4.57739 3 6 (-15)7 1.45330 5.376 8 (-17)2.24 9 (-18)10 (-19)1.0 $\sum_{k=1}^{3} a_{k}^{(8)} = 1.00072 55903 16286 51315$ BOSE-EINSTEIN FUNCTION OF ORDER 8 FOR X IN (-1,1)) (8) k k 1.27083 78604 33006 10151 0 1.13706 01477 22582 82338 1 2 (-1)2.74502 05126 57352 1799 3 (-2) 4.53144 84286 51671 609 4 (-3) 5.72844 09838 41519 42 5 5.99213 60903 83457 4 (-4) 5.63835 40349 16603 6 (-5) 5.05118 13828 3800 7 (-6) 5.26170 55958 177 8 (-7) (-9) -5.38228 89109 3 9 (-11) -4.47509 7257 10 11 0.0 12 (-15)8.41771 13 0.0 14 . (-18) -5.46 15 0.0 (-21) 5.9 16 $\sum_{k=0}^{16} b_{k}^{(8)} = 2.73410 \ 41537 \ 65980 \ 83868$

BOSE-EINSTEIN FUNCTION OF ORDER 8 FOR X IN (-INFINITY,-1).

BOSE-EINSTEIN FUNCTION OF ORDER 9 FOR X IN (-INFINITY-1)

k		(9) k
0	-	1.00018 05034 81616 47885
1	(-4)	1.80797 71737 99062 9
2	(-7)	2.95830 72770 769
3	(-9)	1.61184 55884 8
4 *	(-11)	1.71557 7700
5	(-13)	2.80489 74
6	(-15)	6+18572
7	(-16)	1 • 7009
8	(-18)	5+54
9	(-19)	2+1
		9
		$\sum_{i=1}^{n} a_{i}^{(9)} = 1$
		k 1.00036 15986 59012 30961
		<u>k=0</u>

BOSE-EINSTEIN FUNCTION OF ORDER 9 FOR X IN (-1.1)

b<mark>(</mark>9) k k 1,26839 07793 83443 84499 0 1.13358 69855 04227 99868 1 (-1) 2.72936 41585 90165 2682 2 (-2) 4.47957 02183 04195 388 3 4 5 (-3) 5.58940 88346 84796 29 (-4) 5.67248 80266 05228 2 6 (-5) 4.95135 35637 95898 7 (-6) 4.00057 67056 4932 3.16035 22948 431 8 (-7) 3.04302 48122 12 9 (-8) (-10) -2.69114 44555 (-12) -2.03451 774 10 11 12 0.0 3.2397 13 (-16)14 0.0 15 (-19) - 1.8b⁽⁹⁾ =2.72592 04008 73748 21871 TABLE X. COEFFICIENTS FOR B10(T)

a(10) k k 1.00009 01046 22926 52571 0 9.02020 38901 80247 1 (-5) (-8) 9.78088 48593 67 2 (-10) 3.96168 16909 3 3.33904 503 (-12)4 4.50155 2 5 3 (-14)8.4218 (-16)7 (-17) 2.007 5.8 5 (-19)(-20)1.9 o $\sum_{k=0}^{9} \mathbf{a}_{k}^{(10)} -1.00018 04048 70230 01434$

BOSE-EINSTEIN FUNCTION OF ORDERID FOR X IN (-INFINITY--1)

BOSE-EINSTEIN FUNCTION OF ORDER 10 FOR X IN (-1+1)

b⁽¹⁰⁾ k 1.26721 01502 83260 56398 Ω 1.13192 25714 53935 58158 1 (-1)2.72197 83213 31032 2417 2 4.45578 34504 05528 842 3 (-2) 5.52856 31312 94372 00 4 (-3) 5 (~4) 5.53989 52990 46837 3 4.69397 74192 91605 (-5) 6 (-6) 3.51410 71720 3391 7 2.48672 38248 654 8 (-7) 1.75724 63551 66 9 (-8)(-9) 1.57543 70211 0 (-11) -1.22324 7480 10 11 (~14) -8.47850 7 12 13 0.0 14 (-17)1.158 15 0.0 (-21) -5.8 16 $\sum_{k}^{16} b_{k}^{(10)} = 2.72202 \ 16627 \ 24884 \ 47484$

GAUSS QUADRATURE RULES FOR THE EVALUATION OF

 $2\pi^{-1/2} \int_{0}^{\infty} \exp(-x^2) f(x) dx$

BY

DAVID GALANT

Gauss Quadrature Rules for the Evaluation of

$$2\pi^{-1/2}\int_0^\infty \exp(-x^2)f(x)\,dx$$

by David Galant

Table I is a tabulation of 20S values of the parameters of the threeterm recurrence relation

$$p_j(x) = (x - b_j) p_{j-1}(x) - g_j p_{j-2}(x)$$

with

$$p_0(x) = 1$$
 and $p_{-1}(x) = 0$

for the first twenty monic orthogonal polynomials associated with the weight function $\exp(-x^2)$ on $(0, \infty)$. These parameters were calculated, from the moments using the QD algorithm $\sqrt{1}$ and 50S arithmetic. The least accurate parameters (j = 20) had about 23S.

Table II is a tabulation, also to 20S, of the modes and weights of the Gauss quadrature rules

$$G_{n}(f) = \sum_{j=1}^{n} w_{jn} f(x_{jn}) = 2\pi^{-1/2} \int_{0}^{\infty} exp(-x^{2}) f(x) dx + E_{n}(f)$$

where

 $E_n(x^k) = 0$ for k = 0(1)2n - 1

for n = 1(1)20. The nodes and weights of each rule were calculated from the recurrence relation parameters by applying the QR algorithm to determine